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The dimensional crossover phenomena of heat conduction is studied by a two-dimensional �2D� Fermi-
Pasta-Ulam lattice. The 2D divergence law of the thermal conductivity is confirmed by the simulations results.
The divergence law of the thermal conductivity will change from the 2D class to 1D class as �=Ny /Nx

decreases, here Ny is the size in transverse direction and Nx in longitude direction. The simulation’s results
suggest that the dimensional crossover happens in �*→0 as Nx→�.
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A long-standing task of nonequilibrium statistic mechan-
ics is the understanding of the underlying dynamical mecha-
nisms, which determine the transport laws. If microscopic
interactions between atoms are harmonic, this will lead to the
thermal conductivity � diverges by the system size and the
Fourier’s law will not be obeyed. In 1914, P. Debye had
argued that the nonlinearity in the interparticle forces is nec-
essary for Fourier’s law to hold. After years of intense stud-
ies, there is strong evidence that, in general, the thermal con-
ductivity � would diverge by the system size in one-
dimensional �1D� isolating systems �1� �here, the “isolating”
excludes the systems with on-site potentials�. Meanwhile,
some 2D isolating systems have been studied, such as the 2D
Fermi-Pasta-Ulam �FPU� lattice �2,3�, the 2D Toda lattice
�5�, the 2D Lennard-Jones lattice �2,4,6�, and the 2D har-
monic disordered lattice �7�. For the 2D FPU lattice, the
mode coupling theory �MCT� predicts a logarithmic diver-
gence of the thermal conductivity �4�. However, clear nu-
merical evidence is still lacking and behavior in 2D FPU
lattices is unclear �8�. In 2D FPU lattices, the transverse
modes will interact with the longitude modes due to the non-
linear interparticle potential, and then the dimensional cross-
over will happen in the systems. Here, the dimensional cross-
over not only has attracted attention itself, but also plays a
key role for providing clear evidence on the divergence law
in 2D systems. The FPU potential has some peculiar features
not shared by more realistic systems, however, the basic non-
linearity is included. It is still hopeful to reveal the 2D di-
vergence law by the concrete case. Furthermore, it is inter-
esting to ask how the divergence law changes from the 2D
class to 1D class.

In this Brief Report, nonequilibrium molecular dynamics
simulations of 2D FPU lattices are performed on extensive
system sizes. The Hamiltonian is

H = �
i=1

Nx

�
j=1

Ny � �pij�2

2mij
+ V��qi+1,j − qi,j�� + V��qi,j+1 − qi,j��� ,

where the dimensionless mass mij is unity, qi,j the displace-
ment from the equilibrium position qi,j

0 , and pij the corre-

sponding momentum vector. The interaction potential takes
FPU-� potential, V�x�= 1

2x2+ �
4 x4. Periodic boundary condi-

tions are used in transverse direction. The particles �1, j�, j
=1, . . . ,Ny, are in contact with the high temperature heat
bath Thigh=22 and the particles �Nx , j�, j=1, . . . ,Ny, the low
temperature heat bath Tlow=12. The heat baths are imple-
mented as Langevin baths �1�. The definition of the local
temperature is Ti,j = 	�pi,j

x �2
= 	�pi,j
y �2
= 	�pi,j

x �2+ �pi,j
y �2
 /2,

where pij
x and pij

y are x and y components of the momentum
vector pi,j. The x and y components of local heat flux are

ji,j
x = �f i,j

xx�pi,j
x + pi+1,j

x � + f i,j
yx�pi,j

y + pi+1,j
y ��/4,

ji,j
y = �f i,j

xy�pi,j
x + pi,j+1

x � + f i,j
yy�pi,j

y + pi,j+1
y ��/4,

where f i,j
xx =−

�V��qi+1,j−qi,j��

�qi,j
x , f i,j

yx=−
�V��qi+1,j−qi,j��

�qi,j
y , f i,j

xy

=−
�V��qi,j+1−qi,j��

�qi,j
x , f i,j

yy =−
�V��qi,j+1−qi,j��

�qi,j
y . Thermal conductivity in

longitude direction is obtained by �=Ny
−1�i,j ji,j

x / �Thigh

−Tlow�, and � is a sort of “specific conductivity” per “trans-
verse channel.” We also can define heat conductivity �trans
along the transverse direction. In all simulations, we checked

FIG. 1. �Color online� Temperature profile with Ny =32, Nx

=8192. In transverse direction y, there is no temperature gradient.
In longitude direction x, the temperature profile is nearly linear.
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�trans /��10−5–10−6. A leap-frog integrator �9� with a step
size 0.025 is used. The time evolution was calculated for
time �106–108. In all figures of this paper, the statistical
errors are always smaller than the data symbols. In the simu-
lations, we take the nonlinear strength �=1, and the tempera-
ture of the heat baths T�10. These parameters are chosen to
ensure the systems are running in a strong nonlinear regime
of FPU potential, then the integrable limit behaviors can be
excluded. A typical temperature profile is shown in Fig. 1.

The simulations are performed with the fixed ratio �
=Ny /Nx, � changes from 1/1 to 1/1024 and Nx=8 to 65 536,
Ny =1 to 128. For Nx=65 536, only one datum is obtained at
�=1/1024. ��Nx� with different � are shown in Fig. 2. When
��1/8, the curves overlap. When �	1/8 and Nx is large
enough, the curves overlap too. When �	1/8 and Nx is
small, the systems do not bear 2D property due to small Ny.
As Nx	1024, the overlapped curves show that ��Nx� is lin-
ear in Nx=8 to 64 �the result is the same as Ref. �4��, but
��Nx� in Nx=64 to 512 shows a clear curving. This indicates
a finite size effect. As Nx�1024, the overlapped curves show
a clear linearity by comparing with the black line in a lower
position. The black line takes the fitting formula c1
log10 Nx+c2, here c1 and c2 are arbitrary constants. The log-
log plot of the same data, the inset, shows a clear curve. The
results support the logarithmic divergence of the thermal
conductivity, it is also consistent with the MCT prediction
and the long time tail theory.

For a large enough Ny, the lattice bears the 2D property.
As Nx becomes larger and larger, the lattice becomes thinner

and thinner. The lattice approaches a 1D chain and bears the
1D property. Then a dimensional crossover from the 2D class
to the 1D class will happen. Figure 3 and Fig. 4 show ��Nx�
with Ny =1,2 ,4 ,8 ,16,32,64 for the log-log plot and the log-
normal plot, respectively. In Fig. 3, for Ny =1 �the full
square�, ��Nx� approaches a line as Nx�1024 by comparing
with the black line in a higher position. The black line takes
the fitting formula c1Nx

0.38+c2, here c1 and c2 are arbitrary
constants. Namely, for Ny =1, ��Nx� diverges as the power
law and belongs to the 1D class. In Fig. 4, for Ny �8, the
overlapped curves show a clear linearity by comparing with
the black line in a lower position. The black line takes a
same fitting formula on Fig. 2 including the arbitrary con-
stants. So the overlapped curves show a logarithmic diver-
gence, the 2D class. For fixed Ny, such as Ny =8, first ��Nx�
belongs to a logarithmic divergence Nx	Nx

*, then ��Nx� di-
verges as the power law as Nx�Nx

*. We focus on the aspect
ratio �*=Ny /Nx

*. For Ny =4, Nx
*
200, namely, �*�4/200.

For Ny =32, Nx
*
32 000, then �*�32/32 000. Nx

* becomes
large and �* becomes small as Ny increases. Thus we find the
dimensional crossover for fixed Ny. Furthermore, we suggest
that the dimensional crossover happens in �*→0 for Nx
→� in the 2D FPU lattice.

The periodic boundary conditions in transverse direction
are taken, the simulations are of direct relevance for the ther-
mal conductivity of single-walled tubes. The FPU potential
is not a completely realistic description for real tubes. How-
ever, as the energy propagates diffusive, it is reasonable that
some common features of the thermal conductivity of single-
walled tubes is universal, such as the size dependence and
the dimensional crossover. Thus, the size in transverse direc-
tion Ny can represent the diameter of the tubes. ��Ny� in
Nx=32 to 8192 is shown in Fig. 5. Each ��Ny� will go down

FIG. 3. Log-log plot of ��Nx� with different Ny corresponding to
the different symbols. FIG. 5. Log-log plot of ��Ny� with different Nx.

FIG. 2. Plot of ��Nx� with different �=Ny /Nx. x axis is logarith-
mic scales. The inset shows the same data in the doubly logarithmic
scales.

FIG. 4. Plot of ��Nx� with different Ny corresponding to the
different symbols. x axis is logarithmic scales.
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as Ny increases, then ��Ny� will approach a constant. For the
short tube Nx=256, ��Ny =4� /��Ny =32��1.2. For the long
tube Nx=8192, ��Ny =4� /��Ny =32��2.3. So, the thermal
conductivity will be enhanced by the decrease of the diam-
eter.

In summary, we study the size effect and the asymptotic
behavior of the thermal conductivity in 2D FPU lattice. For a
large �, the simulations results show that � has a logarithmic
divergence, the 2D class. For a small �, � diverges as a
power law, the 1D class. We suggest that the dimensional
crossover happens in �*→0 for Nx→�. Since the periodic
boundary conditions in the transverse direction are used, the

simulations actually study the heat conduction of a tube. The
thermal conductivity will be enhanced by the decrease of the
diameter of the tube, it is a reasonable speculation that the
simulations results may indicate the design of cooler for
CPU.
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